Refine Your Search

Topic

Search Results

Technical Paper

The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC

2012-09-10
2012-01-1578
Partially premixed combustion has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective is to investigate the usefulness of negative valve overlap on a light duty diesel engine running with gasoline partially premixed combustion at low load operating conditions. The idea is to use negative valve overlap to trap hot residual gases to elevate the global in-cylinder temperature to promote auto-ignition of the high octane number fuel. This is of practical interest at low engine speed and load operating conditions because it can be assumed that the available boost is limited. The problem with NVO at low load operating conditions is that the exhaust gas temperature is low.
Technical Paper

Reducing Throttle Losses Using Variable Geometry Turbine (VGT) in a Heavy-Duty Spark-Ignited Natural Gas Engine

2011-08-30
2011-01-2022
Stoichiometric operation of Spark Ignited (SI) Heavy Duty Natural Gas (HDNG) engines with a three way catalyst results in very low emissions however they suffer from bad gas-exchange efficiency due to use of throttle which results in high throttling losses. Variable Geometry Turbine (VGT) is a good practice to reduce throttling losses in a certain operating region of the engine. VTG technology is extensively used in diesel engines; it is very much ignored in gasoline engines however it is possible and advantageous to be used on HDNG engine due to their relatively low exhaust gas temperature. Exhaust gas temperatures in HDNG engines are low enough (lower than 760 degree Celsius) and tolerable for VGT material. Traditionally HDNG are equipped with a turbocharger with waste-gate but it is easy and simple to replace the by-pass turbocharger with a well-matched VGT.
Technical Paper

Investigation and Comparison of Multi Cylinder Partially Premixed Combustion Characteristics for Diesel and Gasoline Fuels

2011-08-30
2011-01-1811
Partially Premixed Combustion is a concept able to combine low smoke and NOx emissions with high combustion controllability and efficiency. It is of interest to be able to utilize PPC in a large operating region in order to meet the Euro VI emission legislation without relying on NOx aftertreatment. This paper investigates the differences in PPC characteristics for three fuels; Diesel Swedish Mk 1, Low Octane Gasoline (70 Octane) and US Standard Gasoline (87 Octane). Engine operating conditions, combustion characteristics, emissions and efficiency are in focus. The experiments were carried out at a range of operating points on a Volvo MD13 which is a six-cylinder heavy-duty engine. At each operating point three combinations of EGR level and λ-value were evaluated. 1. High EGR/High λ, 2. High EGR/Reduced λ, and 3. Reduced EGR/High λ.
Technical Paper

Extending the Operating Region of Multi-Cylinder Partially Premixed Combustion using High Octane Number Fuel

2011-04-12
2011-01-1394
Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels to extend the ignition delay so that air and fuel mix prior to combustion to a larger extent than with conventional diesel combustion. This paper investigates the operating region of single injection PPC for three different fuels; Diesel, low octane gasoline with similar characteristics as diesel and higher octane standard gasoline. Limits in emissions are defined and the highest load that fulfills these requirements is determined. The investigation shows the benefits of using high octane number fuel for Multi-Cylinder PPC. With high octane fuel the ignition delay is made longer and the operating region of single injection PPC can be extended significantly. Experiments are carried out on a multi-cylinder heavy-duty engine at low, medium and high speed.
Technical Paper

Effects of Negative Valve Overlap on the Auto-ignition Process of Lean Ethanol/Air Mixture in HCCI-Engines

2010-10-25
2010-01-2235
This paper presents a computational study of the effects of fuel and thermal stratifications on homogenous charge compression ignition (HCCI) combustion process in a personal car sized internal combustion engine. Stratified HCCI conditions are generated using a negative valve overlap (NVO) technique. The aims of this study are to improve the understanding of the flow dynamics, the heat and mass transfer process and the onset of auto-ignition in stratified charges under different internal EGR rate and NVO conditions. The fuel is ethanol supplied through port-fuel injection; the fuel/air mixture is assumed to be homogenous before discharging to the cylinder. Large eddy simulation (LES) is used to resolve in detailed level the flow structures, and the mixing and heat transfer between the residual gas and fresh fuel/air mixtures in the intake and compression strokes.
Journal Article

How Hythane with 25% Hydrogen can Affect the Combustion in a 6-Cylinder Natural-gas Engine

2010-05-05
2010-01-1466
Using alternative fuels like Natural Gas (NG) has shown good potentials on heavy duty engines. Heavy duty NG engines can be operated either lean or stoichiometric diluted with EGR. Extending Dilution limit has been identified as a beneficial strategy for increasing efficiency and decreasing emissions. However dilution limit is limited in these types of engines because of the lower burnings rate of NG. One way to extend the dilution limit of a NG engine is to run the engine on Hythane (natural gas + some percentage hydrogen). Previously effects of Hythane with 10% hydrogen by volume in a stoichiometric heavy duty NG engine were studied and no significant changes in terms of efficiency and emissions were observed. This paper presents results from measurements made on a heavy duty 6-cylinder NG engine. The engine is operated with NG and Hythane with 25% hydrogen by volume and the effects of these fuels on the engine performance are studied.
Technical Paper

Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion

2010-05-05
2010-01-1471
The current research focuses in understanding how inlet pressure, EGR, combustion phasing, engine speed and pilot main ratio are affecting the main parameters of the combustion (e.g. efficiency, NOx, soot, maximum pressure rise rate) in the novel concept of injecting high octane number fuels in partially premixed combustion. The influence of the above mentioned parameters was studied by performing detailed sweeps at 32 bar fuel MEP (c.a. 16-18 bar gross IMEP); three different kinds of gasoline were tested (RON: 99, 89 and 69). The experiments were ran in a single cylinder heavy duty engine; Scania D12. At the end of these sweeps the optimized settings were computed in order to understand how to achieve high efficiency, low emissions and acceptable maximum pressure rise rate.
Journal Article

The Effect of Intake Temperature in a Turbocharged Multi Cylinder Engine operating in HCCI mode

2009-09-13
2009-24-0060
The operating range in HCCI mode is limited by the excessive pressure rise rate and therefore high combustion induced noise. The HCCI range can be extended with turbocharging which enables increased dilution of the charge and thus a reduction of combustion noise. When the engine is turbocharged the intake charge will have a high temperature at increased boost pressure and can then be regulated in a cooling circuit. Limitations and benefits are examed at 2250 rpm and 400 kPa indicated mean effective pressure. It is shown that combustion stability, combustion noise and engine efficiency have to be balanced since they have optimums at different intake temperatures and combustion timings. The span for combustion timings with high combustion stability is narrower at some intake temperatures and the usage of external EGR can improve the combustion stability. It is found that the standard deviation of combustion timing is a useful tool for evaluating cycle to cycle variations.
Journal Article

Using Hythane as a Fuel in a 6-Cylinder Stoichiometric Natural-gas Engine

2009-06-15
2009-01-1950
Combination of right EGR rates with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark-ignited natural gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. However dilution limit is limited in these types of engines because of the lower burnings rate of natural gas with higher EGR rates. One way to extend the dilution limit of a natural gas engine is to run the engine with Hythane (natural gas+ some percentage hydrogen). Previously benefits of hydrogen addition to a Lean Burn natural-gas fueled engine was investigated [1] however a complete study for stoichiometric operation was not performed. This paper presents measurements made on a heavy duty 6-cylinder natural gas engine.
Technical Paper

Evaluation of the Operating Range of Partially Premixed Combustion in a Multi Cylinder Heavy Duty Engine with Extensive EGR

2009-04-20
2009-01-1127
Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels and injection timings sufficiently early or late to extend the ignition delay so that air and fuel mix extensively prior to combustion. This paper investigates the operating region of single injection diesel PPC in a multi cylinder heavy duty engine resembling a standard build production engine. Limits in emissions and fuel consumption are defined and the highest load that fulfills these requirements is determined. Experiments are carried out at different engine speeds and a comparison of open and closed loop combustion control are made as well as evaluation of an extended EGR-cooling system designed to reduce the EGR temperature. In this study the PPC operating range proved to be limited.
Technical Paper

HCCI Operating Range in a Turbo-charged Multi Cylinder Engine with VVT and Spray-Guided DI

2009-04-20
2009-01-0494
Homogenous charge compression ignition (HCCI) has been identified as a promising way to increase the efficiency of the spark-ignited engine, while maintaining low emissions. The challenge with HCCI combustion is excessive pressure rise rate, quantified here with Ringing Intensity. Turbocharging enables increased dilution of the charge and thus a reduction of the Ringing Intensity. The engine used is an SI four cylinder base with 2.2L displacement and is equipped with a turbocharger. Combustion phasing control is achieved with individual intake/ exhaust cam phasing. Fuel injection with spray guided design is used. Cycle resolved combustion state is monitored and used for controlling the engine either in closed or open loop where balancing of cylinder to cylinder variations has to be done to run the engine at high HCCI load. When load is increased the NOx levels rise, the engine is then run in stoichiometric HCCI mode to be able to use a simple three-way catalyst.
Technical Paper

Closed-Loop Combustion Control Using Ion-current Signals in a 6-Cylinder Port-Injected Natural-gas Engine

2008-10-06
2008-01-2453
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio. Furthermore, ion-current based dilution limit control is applied on the EGR in order to maximize EGR rate as long as combustion stability is preserved.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Journal Article

Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine

2008-06-23
2008-01-1658
Partially Premixed Combustion (PPC) has shown its potential by combining high combustion controllability with emission characteristics that are close to those of an HCCI engine. In order to get PPC the ignition delay needs to be long enough for the fuel and air to mix prior to combustion. This can be achieved by injecting the fuel sufficiently early while running with high EGR. In order to find out where and how PPC occurs a map that shows the changes in combustion characteristics with injection timing and EGR was created. The combustion characteristics were studied in a six cylinder heavy duty engine where the Start of Injection (SOI) was swept from early to late injection over a wide range of EGR levels. The emissions were monitored during the sweeps and in the most promising regions, with low emissions and high efficiency, additional changes in injection pressure and engine speed were applied to get a more versatile picture of the combustion.
Journal Article

Closed-Loop Combustion Control for a 6-Cylinder Port-Injected Natural-gas Engine

2008-06-23
2008-01-1722
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio for a heavy duty 6-cylinder port injected natural gas engine. A closed loop load control is also applied for keeping the load at a constant level when using EGR.
Technical Paper

Validation of a Self Tuning Gross Heat Release Algorithm

2008-06-23
2008-01-1672
The present paper shows the validation of a self tuning heat release method with no need to model heat losses, crevice losses and blow by. Using the pressure and volume traces the method estimates the polytropic exponents (before, during and after the combustion event), by the use of the emission values and amount of fuel injected per cycle the algorithm calculates the total heat release. These four inputs are subsequently used for computing the heat release trace. The result is a user independent algorithm which results in more objective comparisons among operating points and different engines. In the present paper the heat release calculated with this novel method has been compared with the one computed using the Woschni correlation for modeling the heat transfer. The comparison has been made using different fuels (PRF0, PRF80, ethanol and iso-octane) making sweeps in relative air-fuel ratio, engine speed, EGR and CA 50.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Lean Burn Versus Stoichiometric Operation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas

2007-01-23
2007-01-0015
Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn approach may not be sufficient for future emissions legislation. One way to improve the lean burn strategy is to add hydrogen to the fuel to increase the lean limit and thus reduce the NOx formation without increasing the emissions of HC. Even so, the best commercially available technology for low emissions of NOx, HC and CO today is stoichiometric operation with a three-way catalyst as used in passenger cars.
Technical Paper

Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation

2005-10-24
2005-01-3731
In this paper the combustion chamber wall temperature was measured by the use of thermographic phosphor. The temperature was monitored over a large time window covering a load transient. Wall temperature measurement provide helpful information in all engines. This temperature is for example needed when calculating heat losses to the walls. Most important is however the effect of the wall temperature on combustion. The walls can not heat up instantaneously and the slowly increasing wall temperature following a load transient will affect the combustion events sucseeding the transient. The HCCI combustion process is, due to its dependence on chemical kinetics more sensitive to wall temperature than Otto or Diesel engines. In depth knowledge about transient wall temperature could increase the understanding of transient HCCI control. A “black box” state space model was derived which is useful when predicting transient wall temperature.
Technical Paper

Fuel Effects on Ion Current in an HCCI Engine

2005-05-11
2005-01-2093
An interest in measuring ion current in Homogeneous Charge Compression Ignition (HCCI) engines arises when one wants to use a cheaper probe for feedback of the combustion timing than expensive piezo electric pressure transducers. However the location of the ion current probe, in this case a spark plug, is of importance for both signal strength and the crank angle position where the signal is obtained. Different fuels will probably affect the ion current in both signal strength and timing and this is the main interest of this investigation. The measurements were performed on a Scania D12 engine in single cylinder operation and ion current was measured at 7 locations simultaneously. By arranging this setup there was a possibility to investigate if the ion current signals from the different spark plug locations would correlate with the fact that, for this particular engine, the combustion starts at the walls and propagates towards the centre of the combustion chamber.
X